21,704 research outputs found

    Near-field spectra of quantum well excitons with non-Markovian phonon scattering

    Full text link
    The excitonic absorption spectrum for a disordered quantum well in presence of exciton-acoustic phonon interaction is treated beyond the Markov approximation. Realistic disorder exciton states are taken from a microscopic simulation, and the deformation potential interaction is implemented. The exciton Green's function is solved with a self energy in second order Born quality. The calculated spectra differ from a superposition of Lorentzian lineshapes by enhanced inter-peak absorption. This is a manifestation of pure dephasing which should be possible to measure in near-field experiments.Comment: 8 pages, 7 figure

    Dephasing in Quantum Dots: Quadratic Coupling to Acoustic Phonons

    Get PDF
    A microscopic theory of optical transitions in quantum dots with carrier-phonon interaction is developed. Virtual transitions into higher confined states with acoustic phonon assistance add a quadratic phonon coupling to the standard linear one, thus extending the independent Boson model. Summing infinitely many diagrams in the cumulant, a numerically exact solution for the interband polarization is found. Its full time dependence and the absorption lineshape of the quantum dot are calculated. It is the quadratic interaction which gives rise to a temperature-dependent broadening of the zero-phonon line, being here calculated for the first time in a consistent scheme.Comment: 4 pages, 2 figure

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Import of Honeybee Prepromelittin into the Endoplasmic Reticulum

    Get PDF

    Electron-Phonon Interaction in Embedded Semiconductor Nanostructures

    Full text link
    The modification of acoustic phonons in semiconductor nanostructures embedded in a host crystal is investigated including corrections due to strain within continuum elasticity theory. Effective elastic constants are calculated employing {\em ab initio} density functional theory. For a spherical InAs quantum dot embedded in GaAs barrier material, the electron-phonon coupling is calculated. Its strength is shown to be suppressed compared to the assumption of bulk phonons

    Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices

    Full text link
    A new, exact method for calculating excitonic absorption in superlattices is described. It is used to obtain high resolution spectra showing the saddle point exciton feature near the top of the miniband. The evolution of this feature is followed through a series of structures with increasing miniband width. The Stark ladder of peaks produced by an axial electric field is investigated, and it is shown that for weak fields the line shapes are strongly modified by coupling to continuum states, taking the form of Fano resonances. The calculated spectra, when suitably broadened, are found to be in good agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures, SISSA-CM-94-00
    • …
    corecore